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Abstract

Much of human inquiry today is focused on collecting massive quantities of data about complex

systems, with the underlying assumption that more data leads to more insight into how to solve

the challenges facing humanity. However, the questions we wish to address require identifying the

impact of interventions on the behavior of a system, and to do this we must know which pieces of

information are important and how they fit together. Here we describe why complex systems require

different methods than simple systems and provide an overview of the corresponding paradigm

shift in physics. We then connect the core ideas of the paradigm shift to information theory and

describe how a parallel shift could take place in the study of complex biological and social systems.

Finally, we provide a general framework for characterizing the importance of information. Framing

scientific inquiry as an effort to objectively determine what is important and unimportant rather

than collecting as much information as possible is a means for advancing our understanding and

addressing many practical biological and social challenges.
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I. INTRODUCTION

How people combine to form social structures and global economic markets (and their

crises) or how our proteins combine to form our functioning (or dysfunctioning) bodies are

the kinds of questions we must answer to address the challenges facing us today. These

questions are not just more complicated than questions about simple systems—they are

qualitatively different. A key objective is knowing how to intervene in order to have a

desired effect, which requires understanding the vulnerabilities, opportunities and levers

of change of the system. For complex systems, this goal requires a deeper analysis than

the traditional scientific methodologies, which separate the micro and the macro scales,

and thus a more sophisticated strategy than collecting as much information as possible.

The methodology described here that focuses on patterns rather than statistics is based

on an advance in physics, but can be generalized and applied to various complex systems.

Understanding complex systems through the new tools uniquely suited to address these

patterns will enable us to design effective interventions for pressing societal questions.

There are two main reasons that traditional methods, which have been successful in our

study of simple systems, begin to break down when applied to complex systems. The first is

that parts are neither independent nor coherent; the second is that they form actions that

occur across scales ranging from microscopic to macroscopic.

In complex systems [1], the units we are describing are acting neither totally indepen-

dently nor totally coherently; rather, they are interdependent, both influencing each other

and compelled by common causes. An example can be found in commodity markets. The

traditional theory of markets assumes that people decide on investments independently and

rationally, and therefore predicts a supply and demand equilibrium. Interestingly, it is not

so much the assumption of rationality that does not hold up in complex systems analyses of

markets today, but rather the independence. The breakdown of equilibrium due to trend-

following has been well-established since 1990 [2], but the theory at that point, subject to the

constraints of the concepts and mathematics of traditional economics, was not able to rep-

resent the dynamics after the breakdown. In a complex systems analysis of the commodity

markets [3], actions of individuals are not fully independent; rather, due to trend-following,

people make decisions that influence and are influenced by the decisions of others. These

influences lead individual actions to combine into collective oscillations (Fig. 1).
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FIG. 1: Bubbles and crashes in market prices result from bandwagon effects when price changes
themselves motivate traders, leading to mutual influence between traders, as buying can cause more
buying and selling can cause more selling. More precisely, bubbles arise as an interplay between
two different kinds of investors, trend-following speculators who buy when prices are increasing
and sell when they decrease, and fundamental investors who buy-low-and-sell-high.

If the price of a commodity happens to go up, trend followers, who jump on the band-

wagon, push the price further away from equilibrium. The further the price is from equilib-

rium, however, the more the conventional investors who “buy low and sell high” get involved,

and their selling provides a force driving the price back towards equilibrium. Indeed, the

further the price deviates from equilibrium, the more this “Walrasian force” strengthens,

eventually reversing the upward trend. At this point, the bandwagon effect drives the price

down (the crash!), eventually overshooting equilibrium, and restarting the cycle. This inter-

play results in an oscillation of prices deviating from equilibrium. Rather than calculating an
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FIG. 2: Schematic diagram of a block (with a velocity at a particular moment, v) sliding down
an inclined plane. The macroscopic motion subject to gravity and friction may be treated using
Newton’s laws of motion, while the microscopic behavior of the atoms may be treated using ther-
modynamics by considering the local oscillations of groups of atoms as random and independent;
the statistical treatment of that movement leads to the determination of pressure and temperature
of the block and the inclined plane.

unstable equilibrium price (which would make sense if people were acting entirely indepen-

dently), this methodology identifies the large scale pattern of the system, and successfully

maps it onto the bubble and crash dynamics, accurately describing global food prices [3].

Why didn’t traditional methodologies have the ability to consider such interdependencies?

A key to their limitation is that they are applicable only to systems in which there is a

separation of behavior between the micro and macro scales. Interactions among the parts

that cause large scale behavior, like the trend following induced market bubbles, violate this

separation. This is not generally an issue in the simple systems that were the essence of

academic science until recently.

Consider a block sliding down an inclined plane. To address the micro scale—the

molecules—we average over them and, using thermodynamics, describe their temperature

and pressure. To address the macro scale—the block and the inclined plane—we use New-

tonian physics to talk about their large scale motion (see Fig. 2). In this case, the pieces

can be considered to be acting either independently (the random relative motion on the

micro scale) or coherently (the average motion on the macro scale) and since the scales are

sufficiently distinct we do not encounter a problem in describing them separately.

But many systems, especially those we are interested in understanding and influencing,

are not well described by two separate levels. Consider a flock of birds as it leaves a tree in
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response to a crack of thunder. If all of the birds flew independently in different directions,

we would need to describe each one separately. If they instead all went in the same direction,

we could simply describe their average motion. On the other hand, if we were interested

in how the birds move from the initial mostly independent directions of movement, into

groups and then came together as a flock, describing each bird’s motion would be too much

information and describing the average would be too little information. Understanding the

complex behavior at the transition from independent to coherent behavior is best described

across scales, and thus requires knowing which information is relevant: important at the

scale of interest.

This example can be framed in a way that is generalizable to a wide range of complex

systems. We will begin by examining an archetypal example from physics, in which the

transition from independent to coherent actions happens across the entire system and the

units we examine are at least conceptually simple. Most importantly, this example has

attracted attention because of an undeniable contradiction between traditional theoretical

results and empirical results, compelling a reevaluation of traditional theory. This provided

inspiration for a profoundly important advance in science.

II. A PARADIGM SHIFT IN PHYSICS

The archetypal case of a system undergoing a transition from independent to dependent

parts is when matter undergoes a phase transition, for example from liquid to gas. While

many of the domains that the tools described here will be useful for (such as societal ques-

tions) are more complicated, we begin with a key simpler example to illustrate the idea, and

then generalize to more complicated complex systems.

A. The Original Puzzle

This issue drew attention due to a mismatch between the theoretical expectation and the

empirical observation of the characteristics of the critical point in the phase transitions of

water [4].

It is well known that as the temperature and pressure of water change, so does its density

(see Fig 3). There is a line of sharp transitions from the liquid to the vapor phase at a
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FIG. 3: The phase diagram of water. The line of transitions between liquid water and water vapor
stops at the critical point (red dot). At that point the fluctuations between liquid-like and vapor-
like densities extend across the system so that the system is not smooth (violating the assumptions
of calculus) and averages are not well behaved (violating the assumptions of statistics). A new
method that considers behaviors across scales, renormalization group, was developed to address
this and similar questions.

temperature that increases with increasing pressure.

What happens at the critical point, where the line stops? The temperature is so high

that the molecules have a lot of energy and are not able to cohere together into a liquid, but

the pressure is so high that they are not able to fully separate and act independently as in

a gas.

We therefore have a case of the scenario described above, with the units acting neither

fully independently nor fully coherently, and the separation of scales begins to break down

as we consider the behavior of the phase transition itself. Along the phase transition line,

there is a discontinuity in the density—a clear distinction between the liquid phase and the

gas phase. As conditions approach the critical point, the discontinuity disappears in the

form of a ‘power law.’ A power law is a relationship in which one quantity does not grow

in direct proportion to the other, but rather grows as the other to a power β, y = axβ.

This is precisely the point at which theory did not match the empirical findings. For phase

transitions, the nature of the power law (its exponent, β) was supposed to be 0.5 according
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to traditional theory (Landau theory) [5], but was determined to be 0.33 empirically [6, 7].

B. The Solution

Our usual methods of calculus and statistics fail at this point because their assumptions

no longer hold true. Calculus assumes that matter is smooth and statistics assumes that

averages over large numbers of objects are well defined. Away from the critical point these

assumptions are justified, since the microscopic behavior of atoms is well separated from

the macroscopic behavior of the material as a whole. Different parts of the material appear

essentially the same, making it smooth, and any average over atomic properties has a single

well defined number. However, at the critical point, the density fluctuates—between water-

like and vapor-like conditions—so that the material is not smooth and the average taken

of the material as a whole is not representative of the density at any particular location or

time. Near the critical point, the matter is composed of patches of lower and higher density,

and this patchiness occurs on all scales.

How can we effectively characterize the behavior of the system to account for the mis-

match between the theoretical prediction and the empirical observation? The answer to the

puzzle lies in capturing more information than just the average, but less than describing

each molecule. A new method called renormalization group [8, 9, 10, 11, 12] was developed

in order to determine which information was “relevant,” i.e. important at the largest scales.

The renormalization group method showed that the relevant information that the traditional

theory was missing by averaging was the variability of density across the patches. This vari-

ability can’t be ignored because it is large enough that changes in densities at different

locations interact with each other. The idea however, can be generalized to the analysis of

many different complex systems by connecting it with information theory.

III. INFORMATION THEORY AND SCALES

As in physics, the main problem in trying to address many real world challenges in

biological and social systems with big data is that describing every single possible variable

is too much information, but describing only the average is not enough to capture how the

system works. We need some more information, but only about the relevant variables. From
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an information theory perspective, a faithful representation must have the same number of

states as the system it is representing. This enables the states of the representation to be

mapped one to one to the states of the system. If a model has fewer states than the system,

then it can’t represent everything that is happening in the system. If a model has more

states, then it is representing things that can’t happen in the system.

Conventional models often do not take this into account and this results in a mismatch of

the system and the model; they are unfaithful representations and do not properly identify

vulnerabilities, opportunities, and levers of change in the system. Because we are interested

in influencing the system, having too much information is counterproductive; we only want

to know the most important factors.

To formalize these ideas, it is useful to understand information as related to scale. The

complexity profile [1, 15] represents the amount of information as a function of scale. Typ-

ically, the finer the scale of inquiry about a system, the more information is needed to

describe it (Fig. 4).

A sufficient representation, therefore, is one that has a set of possible states corresponding

to the set of distinguishable states of the system at each level of resolution, down to the

level we need to describe the properties we care about, the relevant parameters, and no

further. Rather than accumulating details about the system, we should start with the

largest scale pattern of behavior and add additional information only as needed. According

to the complexity profile, each piece of information about a system has a size—the largest

scale at which we can begin to detect that piece of information.

This relationship between the physics paradigm shift and information theory allows us

to generalize these new ideas to important questions about all complex systems. Consider

attempting to decide on policies about regulating the stock market based on a model with as

much information as possible about as many variables as possible, as opposed to a sufficient

model with only the relevant one or two parameters. When we have only a few parameters

we can hope to validate and verify our understanding. Modeling systems according to

this guideline allows one to disentangle the interdependencies, identify the structure of the

system, and understand how to act upon it in order to achieve the desired large scale effect.

The methodology of renormalization group offers us more than just the idea. We gain

formal guidance about how to construct models based upon the aggregation of components

to identify the relevant parameters.
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FIG. 4: The complexity profile is the amount of information that is required to describe a system
as a function of the scale of description. Typically, larger scales require fewer details and therefore
smaller amounts of information. The most important information about a system for informing
action on that system is the behavior at the largest scale.

As we increase the scale we see fewer details. Small distinctions disappear and only

larger distinctions that involve many parts of the system together remain. How properties

of parts aggregate determines what is observed, i.e. what is important. By studying the

way that properties aggregate we can identify the important larger scale system properties.

Aggregation is determined by how the parts depend on each other. The simplest case is

when they are independent; in this case, aggregation is what we know from statistics that

gives rise to the average and the random deviations described by the normal (Gaussian)

distribution. When there are other kinds of dependencies, different behaviors occur. These

include behaviors such as dynamical oscillations, spatial patterns, and so on.

Understanding how to recognize these behaviors requires another lesson gained from the

renormalization treatment of phase transitions: the surprising equivalence of water boiling

to vapor and the loss of magnetization as a magnet is subjected to increasing temperatures.
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IV. UNIVERSALITY

A. Other materials

It turns out that the relevant parameters of the phase transition of a liquid correspond

perfectly to the relevant parameters of many magnets. This is neither coincidence nor mere

analogy, but a direct mathematical relationship. Magnets have local magnetizations that

fluctuate at a magnetic critical point just like the density at the water-vapor critical point.

Just as molecules of water undergo a transition from order to disorder as the tempera-

ture increases, so do the little magnets undergo an order-to-disorder transition. The local

magnetizations interact with each other, just like the density fluctuations in water at the

critical point, and the result is that these two seemingly different types of systems map

mathematically onto each other.

This idea has guided physicists in addressing diverse questions about the structure and

dynamics of materials [13, 14]. We can consider these concepts even more generally for

complex systems.

B. Universality in complex systems

When we go to the largest scale behaviors of a system, we simplify the mathematical

description of the system, so that there are only a very limited set of possible behaviors

that can happen. Just like with the mapping of water to vapor transitions onto magnetic

transitions, one type of behavior can describe many possible systems.

In a particular sense, this idea is used in traditional theory as scientists use the normal

distribution for many different biological and social systems. Why can the same distribution

be used for all of these cases? The reason is that when a system has independent parts, the

way they aggregate is the same, and the result is the normal distribution as the largest scale

behavior of the system. When there are dependencies, the normal distribution no longer

applies, but there are behaviors that are characteristic of other kinds of dependencies. To

generalize, we have to determine the way kinds of dependencies give rise to kinds of large scale

behavior. A different example is when scientists use wave equations to describe everything

from music strings to water waves to light. Even though these are very different systems,

the dependencies that give rise to their behaviors, and the behaviors themselves, are related
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FIG. 5: The idea of universality recognizes that systems map onto a small set of large scale
models, each of which applies to a large set of possible systems with widely different micro details.
Examples shown in this figure: the normal (Gaussian) distribution, wave motion, order to disorder
transitions (the subject of phase transitions discussed in the text), Turing spatial patterns, fluid
flow described by Navier-Stokes equations, and attractor dynamics.

mathematically. This shows how many systems can have the same behavior even though

they differ in detail, a concept called universality (Fig. 5).

Universality enables us to study classes of systems whose behaviors can be described the

same way, and can be captured by a mathematical model. The best way to think about

this is that the mathematical model is one member of the class. This is the principle of

universality that is formalized by the analysis of renormalization group and generalized by

the principles we described here of how to apply information theory to the scientific study

of complex systems.
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V. SENSITIVITY AND CHAOS

Applying the complexity profile to biological and social systems presents challenges that

are important to recognize. Consider micro to macro connections in biology. A single genetic

mutation in the β-globin gene, substituting valine for the glutamic acid at position 6, causes

abnormal hemoglobin molecules. One such mutation cases sickle cell trait, which provides

resistance to malaria, while two such mutations in an individual lead to sickle cell disease.

Consider micro to macro connections in society. A single individual’s idea, Steve Jobs’

concept of an iPhone, changed the way hundreds of millions of people work and play. These

large scale differences in the physiology of an organism or a society over time may seem to

run counter to the crux of the point we are making and to differentiate biological and social

systems from physical ones. But similar sensitivities to small scale events affect physical

systems through the “butterfly effect” where small initial variations grow over time to have

large scale impacts.

The large scale impacts of mutations and ideas arise from the possibility of informational

replication over time that enables them to achieve large scale. Biological mutations can

have large impacts because of the replication of DNA throughout the cells of the body, and

across populations, and through the subsequent transcription of their information to many

proteins that function in particular ways. Social systems have sensitivity to specific ideas

as they are transmitted to others, embodied in machinery and organizational processes that

mass produce and distribute them widely. The butterfly effect similarly arises when the

information that is in a small scale motion is amplified over time by the available energy

sources in heated oceans and embodied in the highly redundant large scale motion of a

hurricane.

These processes are not counter to the framing of information importance. However,

they do make its application more challenging as we need to understand the way that

information is replicated over time. That there is sensitivity to micro information does not

mean that all micro information can or will end up as large scale system behaviors. Not

all molecular changes, or even genetic mutations, have large scale impact. Similarly, ideas

and individuals that can change society as a whole are rare. Whether and to what extent a

large scale behavior is sensitive over time to the impact of small scale events—which have

increasing impact as they are replicated—is part of the analysis of the scale of information
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in the behavior of a complex system. In every case, understanding what is the large scale

information is essential to the analysis and our eventual understanding of the system.

VI. CONCLUSIONS

While it is tempting to believe that the current focus on big data is bringing us closer

to understanding the systems around us, we claim this is not the case. Describing in detail

all the molecules that make up the people who are investing in a market will not enable us

to answer policy questions. We have shown that considering the importance of information

(scale) is crucial for understanding the vulnerabilities and levers of change of a system. By

connecting the paradigm shift in phase transition theory to information theory, we have

described how this idea may be applied to the study of all complex systems

Can we demonstrate that this approach can work for biological and social systems? In

recent years we have tested this approach in addressing a number of important biological

and social questions. We have developed theories that (1) accurately describe the locations

of ethnic violence [16, 17] by looking at the universal properties of the separation of dis-

tinct types (in this case ethnic groups) similar to the separation of immiscible metals by

spinodal decomposition, (2) accurately describe geographic distributions of biodiversity [18]

by considering spontaneous spatial pattern formation in a high dimensional type of Turing

patterns, (3) accurately describe the dynamics of global food prices [3, 19] by looking at

the first order equations describing the dynamics of investor decision making. We have also

contributed [20, 21, 22, 23, 24] to a raging controversy in evolution about the relevance of

kin and group selection [25, 26, 27, 28], a key component of which is a direct translation of

the failure of Landau theory onto biological evolution. Just as for the case of water boiling,

averages across an evolving population don’t describe evolutionary dynamics when there

are fluctuations across space in its genetic composition. The breakdown of the approxima-

tions used in evolutionary biology result in mis-characterization of the evolution of altruism,

which need not arise due to kin selection, but rather can robustly arise by association due

to proximity in a spatially patchy system. In each of these questions, our analysis is guided

by an understanding that is mostly not described in papers, as the motivation is hidden

by assuming a hypothesis or model. But how can the right model be guessed? It can be

inferred through an understanding of relevant variables.

13



The technical demands of determining relevance and irrelevance of information may seem

to make modeling more difficult than it has to be. Why don’t we just include more details?

If we include enough, won’t a model be correct? The answer is no, for two reasons. The

first is sufficient but the second is more important. The first reason is that including many

details is not sufficient since without attention to determining what is and is not important

we cannot tell whether we have included the details that matter. The second reason is

that including many details that don’t matter actually prevents us from addressing the

question we really want to answer: which levers are important. Determining the levers that

are important is equivalent to determining what is important at the larger scales. Thus

the questions we really want to answer about systems are exactly the same as determining

which are the relevant variables.

Considering systems in this way, we should recognize that any mathematical model,

and indeed any description or characterization, whether from theory or phenomenology, in

words, pictures, movies, numbers or equations is “valid” only because of the irrelevance of

details. Moreover, such information applies across different instances for the same reason:

the sufficiency of the representation, having captured the important variables. Any two

systems we look at (or the same system at different moments in time, or different cases of

the same system) are different in detail. If we want to say anything meaningful about a

system—meaningful in the sense of scientific replicability or in terms of utility of knowledge—

the only description that is important is one that has universality, i.e. is independent of

details. There is no utility to information that is only true in a particular instance. Thus, all

of scientific inquiry should be understood as an inquiry into universality—the determination

of the degree to which information is general or specific.

We thank Irving Epstein for comments on an earlier version and Karla Z. Bertrand, Blake

Stacey, Casey Friedman and Dominic Albino for editorial comments.
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